Metabolism of the endocrine disruptor pesticide-methoxychlor by human P450s: pathways involving a novel catechol metabolite.
نویسندگان
چکیده
The metabolism of methoxychlor, a proestrogenic pesticide (endocrine disruptor), was investigated with cDNA expressed human cytochrome P450s and liver microsomes (HLM). In addition to 1,1,1-trichloro-2-(4-hydroxyphenyl)-2-(4-methoxyphenyl)ethane (mono-OH-M), 1,1,1-trichloro-2, 2-bis(4-hydroxyphenyl)ethane (bis-OH-M), and 1,1,1-trichloro-2-(4-hydroxyphenyl)-2-(3, 4-dihydroxyphenyl)ethane (tris-OH-M), a new metabolite was identified as 1,1,1-trichloro-2-(4-methoxyphenyl)-2-(3, 4-dihydroxyphenyl)ethane (catechol-M; previously assumed to be ring-OH-M) and as a key metabolic intermediate. A novel metabolic route was proposed involving methoxychlor O-demethylation to mono-OH-M, followed by bifurcation of the pathway, both leading to the same final product tris-OH-M: pathway a, mono-OH-M is demethylated to bis-OH-M, followed by ortho-hydroxylation forming tris-OH-M and pathway b, mono-OH-M is ortho-hydroxylated forming catechol-M that is O-demethylated forming tris-OH-M. Among the human cDNA-expressed P450s examined, CYP1A2, 2A6, 2C8, 2C9, 2C19, and 2D6 exhibited mainly O-demethylation, with CYP2C19 being the most catalytically competent. CYP3A4, 3A5, and rat 2B1 catalyzed primarily ortho-hydroxylation of mono-OH-M (CYP3A4 being catalytically the most active) but were weak in O-demethylation. CYP1A1, 1B1, 2E1, and 4A11 demonstrated little or no catalytic activity. CYP2B6 appeared unique, catalyzing effectively both O-demethylation and ortho-hydroxylation. Thus, CYP2B6 demethylated methoxychlor to mono-OH-M and ortho-hydroxylated the mono-OH-M forming catechol-M; however, 2B6 did not appreciably demethylate mono-OH-M or ortho-hydroxylate bis-OH-M, suggesting a narrow substrate specificity. CYP2C19-catalyzed demethylation of methoxychlor, mono-OH-M and catechol-M, demonstrating relatively good substrate affinity (K(m) = 0.23 - 0.41 microM). However, the 3A4 ortho-hydroxylation of mono-OH-M and bis-OH-M exhibited lower affinity, K(m) = 12 and 25 microM, respectively. Thus, a phenolic group seems essential for efficient ortho-hydroxylation, forming catechol-M and tris-OH-M. Inhibition studies with HLM and P450s indicate that CYP2C9 and likely 2C19 are catalysts of methoxychlor-mono-demethylation.
منابع مشابه
Enantioselective metabolism of the endocrine disruptor pesticide methoxychlor by human cytochromes P450 (P450s): major differences in selective enantiomer formation by various P450 isoforms.
Methoxychlor, a currently used pesticide that in mammals elicits proestrogenic/estrogenic activity and reproductive toxicity, has been classified as a prototype endocrine disruptor. Methoxychlor is prochiral, and its metabolites 1,1,1-trichloro-2-(4-hydroxyphenyl)-2-(4-methoxyphenyl)ethane (mono-OH-M); 1,1,1-trichloro- 2-(4-methoxyphenyl)-2-(3, 4-dihydroxyphenyl)ethane (catechol-M); and 1,1,1-t...
متن کاملMechanism of induction of cytochrome p450 enzymes by the proestrogenic endocrine disruptor pesticide-methoxychlor: interactions of methoxychlor metabolites with the constitutive androstane receptor system.
Methoxychlor, a structural analog of the DDT pesticide, was previously shown to induce rat hepatic CYP2B and -3A mRNAs and the corresponding proteins [J Biochem Mol Toxicol 1998;12:315-323], Additionally, methoxychlor was found to activate the constitutive androstane receptor (CAR) system and induce CYP2B6 (J Biol Chem 1999;274:6043-6046), suggesting a mechanism for methoxychlor-mediated cytoch...
متن کاملGlucuronidation of the oxidative cytochrome P450-mediated phenolic metabolites of the endocrine disruptor pesticide: methoxychlor by human hepatic UDP-glucuronosyl transferases.
Methoxychlor, a currently used pesticide, is a proestrogen exhibiting estrogenic activity in mammals in vivo. Methoxychlor undergoes oxidative metabolism by cytochromes P450, yielding 1,1,1-trichloro-2-(4-hydroxyphenyl)-2-(4-methoxyphenyl)ethane (mono-OH-M) and 1,1,1-trichloro-2,2-bis(4-hydroxyphenyl)ethane (bis-OH-M) as main metabolites. Since humans may be exposed to these estrogenic metaboli...
متن کاملShort Communication Mechanism of Induction of Cytochrome P450 Enzymes by the Proestrogenic Endocrine Disruptor Pesticide-Methoxychlor: Interactions of Methoxychlor Metabolites with the Constitutive Androstane Receptor System
Methoxychlor, a structural analog of the DDT pesticide, was previously shown to induce rat hepatic CYP2B and -3A mRNAs and the corresponding proteins [J Biochem Mol Toxicol 1998;12:315– 323], Additionally, methoxychlor was found to activate the constitutive androstane receptor (CAR) system and induce CYP2B6 (J Biol Chem 1999;274:6043–6046), suggesting a mechanism for methoxychlor-mediated cytoc...
متن کاملEffect of transient embryonic in vivo exposure to the endocrine disruptor methoxychlor on embryonic and postnatal testis development.
The current study was designed to examine the effects of a transient embryonic exposure to the pesticide methoxychlor, an endocrine disruptor, on in vivo rat testis development and function. Gestating female rats were transiently administered methoxychlor (MXC) from embryonic day 7 (E7; EO = plug date) through E15. Embryonic testes were collected at E16 and postnatal (PO = day of birth) testes ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Drug metabolism and disposition: the biological fate of chemicals
دوره 30 9 شماره
صفحات -
تاریخ انتشار 2002